

## **CWMAG 2023**

# Paper 9 – Pump Design and Optimisation

By Ashley Upton and Andy Aung - HydroCo



#### Paper Overview





#### **Borehole Optimisation Study**

#### Scope:

- Review the client's borehole sites
- Rank on power consumption
- Select 6 highest consuming sites

#### Target:

 Reduce overall site operational costs by 5%





#### Measuring The Existing System

OVERVIEW

Visiting the site with the aim to:

120 Mins

- Understand system
- Data collection

1

2

3

4

5

Data verification

HydroCo

#### Measuring The Existing System

- Borehole pump assessment
  - Well drawdown

2

- Water level variance
- Influences maximum and minimum pump lift







#### **Reducing System Losses**

- Condition of the assets •
- Type of assets •
- Remove unwanted headloss •



#### Reducing System Losses - Site Model Calibration

- Create a model of the site ٠
- Calibrate using measured data ٠
- Identify significant headlosses

2

3

4

5

Assess existing pump performance ٠



#### **Design Optimum Pumps**

What does the client want from the site?

- Pumping more, or less water •
- Reducing electricity bills •
- Change in operation: •
  - Sending water somewhere else? ٠
- Network calming ٠
- Backup pumps ٠

2

3

4

5





HydroCo

#### Design Optimum Pumps – Defining the system curve



BH3+BH1, 28 MLD over 24 hours

#### Design Optimum Pumps - Defining The Duty Point



#### Design Optimum Pumps - Defining The Duty Point





#### Design Optimum Pumps - Defining The Duty Point





#### Collect Manufacturers 'Best Offering'

2

3

4

5



Existing Pump: 275 kW £1,395 per day (inc. site headloss)

Design Pump: 163 kW £930 per day (exc. site headloss)

Manufacturers Best Pump: 160 kW £912 per day

35% Saving Achieved



#### **Optimum Pump Selection - Composition Of Pumped Energy**



2

3

5

Pump Efficiency



Energy dependent on the efficiency of the pump

System Losses

Energy required to overcome system losses

#### Static Lift

Energy required to get water out of ground into storage with no headloss.



#### Borehole Optimsation Conclusions



#### Case Study - System Step Change

Res 1,2 & 3





PS1



HydroCo

#### Case Study - Pump Configuration







### Case Study - Optimizer Plans

#### Case Study - 7 day Cost Comparisons

Pumping Station 1 - 2.5% saving

Pumping Station 2 – 21.1 % Saving

Total – 11.5 % saving



OptimisedBaseline

## 7 day saving = $\pm 1.5k$



#### Case Study - Manual Plans Derived after the optimisation:



#### **Optimisation Study Conclusions**

Optimisation improves efficiency of the network

> Provides the ability to find new ways to run the system

Next step towards nearreal-time modelling capabilities





## Thank you for listening

## Are there any Questions?

