Optimisation in Design

Our Presentations

Simon Croft

Modelling Lead Anglian Water

Shervin Tabatabai

Head of Networks
Jacobs

18th October 2022

Agenda

- Who and What is SPA?
- Required Outcome and Timing
- Phasing of Work
- Model and Optimiser Setup
- Validation and Outputs
- Benefits of Optimiser

Who is SPA?

Project 13 programme made of 5 partners:

Farrans

Jacobs

Mott MacDonald Bentley

Costains

Anglian Water

Brought together to deliver the Water Resource Management Plan

https://www.anglianwater.co.uk/siteassets/household/about-us/wrmp-report-2019.pdf

What is SPA?

Strategic Pipeline Alliance set up to address Anglian Water's WRMP19

Water Resource Management Plan needs as follows:

- <u>Drought resistant</u> (1:200) water supply
- Accommodate future <u>Growth</u>, <u>Climate Change</u> and <u>Sustainability Reductions</u>
- Provide <u>Resilience</u> to various water treatment works

How?

Pipeline interconnectors from Elsham to Colchester

Outcomes Requirement

Baseline supply-demand balance in 2044-45 (DYAA scenario)

To meet the deficit in the following zones.

Provide resilience to 20 water treatment works by connecting into them.

Timeline

- Sprint to construction required an accelerated timeline
- Impossible to achieve using traditional modelling approaches
- 4 months from WRMP flows to recommended sizing

						1000	Jan	uary		The state of	Feb	ruary		1000	M	arch		30000	A	pril			. M	Any
		Owner	Reviewer	Comments	Individual Actions	Wk1	Wk2	Wk3	Wk4	WkS	Wk6	Wk7	Wk8	Wk9	Wk10	Wk11	Wk12	Wk13	Wk14	Wk15	Wk16	Wk17	Wk18	Wk19
	Strategic Modelling Strategy and plan	SC	VA / CR			-	-			-		-				-							-	-
	Change and version control including record of assumptions	SC	VA / CR /ST																					
Model	Review and check of existing models and all input data	CR																						
	Define Hydrualic design Cases including failure modes	SC																						
Planning /	Define network model cases	VA/ CR																						
Strategy	Define extents of strategic model	VA/ CR						1																
	Define conditioning Strategy	CR																						
	Confirm existing sites turn down and up	SC																						
	Control requirements	VA/ CR	MC																					
	Aquator / EBSD - System maximum capacity					_																		
Flow Rate:	Aquator - Utilisation levels at various intervals																							
and	Aquator Resilience desgin flow rates																							
Demands	Miser - Resilience design flow rates			1.																				
	QA and Formal Agreement/Signoff	VA/CR																						
	Design Freeze	P. Haldin				-)		-	1	1	1												
	Extend the strategic model										100													
	Update with defined flow scenarios from Aquator															Back Office	100							
Model Pre	Model conversion, data cleansing and model validation			Optimatics work						Back Office	e													
63.50	Update model for Control requirements	_		47-11-11-11						-							-	_	_	_				_
	QA and Formal Agreement/Signoff																							
	Agree Optimiser penalities																-	_	_	_				
	Agree pipeline sizing criteria							-									-							
	Agree WR sizing criteria	_	1			_																		
	Model for Controls						G																	
	Optimatics (strawman runs)																							
Model Run	s Prelim exam answers	_	1																					_
in	Pipe Diameter Manual Calcs		_																					
	Model runs including validation	_	_			_														-				_
September 1	WR sizing		1			_																		
	Pipeline sizing																							
	System curves for pump selection		1													_								_
	QA and Formal Agreement/Signoff		1			_																		
	ROV	_	1			_										_								_
	100		1														_							_

Phase 1 - Outline Direction

- ✓ Strategic Pipeline Alliance set up to address WRMP19 needs as follows:
- ✓ <u>Drought resistant</u> (1:200) water supply
- ✓ Accommodate future <u>Growth</u>, <u>Climate</u> <u>Change</u> and <u>Sustainability Reductions</u>
- ✓ Provide Resilience to various water treatment works

Tiger team was together exploring opportunities in parallel activity streams

Phase 1 - Outline Direction

- We needed:
 - Aquator modelling
 - Network modelling
 - Operational buy-in
 - Governance procedure
 - Timescales

Phase 2 - Flows, model and formulation

On agreement on the general direction, we now needed:

- Suitable hydraulic network model
- The criteria to make a decision
 - Constraints
 - Costs (financial and carbon)
 - Scenarios
- A design horizon

Network model with suitable coverage

Design Horizon

Design criteria

Design Horizon

Water Resources Flows

Multiple runs to include Average Day demands, peak day demands, Resilience demands and failure modes.

Aquator has output over 130 years of historical hydrological trends against:

- ✓ DYAA
- ✓ NYAA
- ✓ Drought

Miser has given outputs regarding

✓ Resilience

The outputs show that the strategic grid will not be a static system, but rather a dynamic one that operates differently, not least of which time of year due to existing water source availability

Network modelling will need to overlay the above seasonal variations to further operational constraints

Design Horizon

Agreement of Flowrates

Broad mix of operating flows agreed with water resources and supply teams:

- 1:200 drought events
- Dry year and Normal year
- 2025 and 2045
- Seasonal variations
- Resilience scenarios

																												_						_	
						H5 - N	IY 202	5		Ru	ins			46 - N	Y 204	5		Ru	ins		н	17 - DY	202	5		Ru	ıns			48 - D	Y 204	5		Rui	ns
	8	Operational	Interconnector	cabacut	Winter	Spring	Summer	Autumn	Average	5	6	Demand	Winter	Spring	Summer	Autumn	Average	7	8	Demand	Winter	Spring	Summer	Autumn	Average	9	10	Demand	Winter	Spring	Summer	Autumn	Average	11	12
					1.00	0.98	1.08	0.94	1				1.00	0.98	1.08	0.94	1				1.00	0.98	1.08	0.94	1				1.00	0.98	1.08	0.94	1		
Elsham to Welby				55	10	15	23	20	19	15.87	21.53		13	12	20	17	16	12.67	18.33	3	55	33	37	54	45	54.46	34.99		54	33	35	54	44	53.87	34.20
Notts	19.3			19	.9 0.1	0.8	2.2	0.8	1.1	0.80	1.49	20.1	0.8	0.4	2.4	0.0	0.9	0.61	1.21	21.1	1.8	1.3	3.4	0.5	1.8	1.12	2.38	21.1	1.8	1.4	3.5	0.5	1.8	1.17	2.43
Lincoln				0	.0 0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00
Grantham	31.0			25	.8 0.0	0.0	0.0	0.0	0.0	0.00	0.00	23.8	0.0	0.0	0.0	0.0	0.0	0.00	0.00	27.5	0.0	0.0	0.0	0.0	0.0	0.00	0.00	25.9	0.0	0.0	0.0	0.0	0.0	0.00	0.00
Welby to Etton			9	55	10	15	20	20	18	15.07	20.05		13	12	18	17	15	12.06	17.12	2	53	32	33	54	43	53.34	32.60		52	32	32	53	42	52.71	31.77
Bourne (Input)	47.7			41	.9 -7.0	-7.0	-7.0	-7.0	-7.0	-7.00	-7.00	40.9	-7.0	-7.0	-7.0	-7.0	-7.0	-7.00	-7.00	44.9	-7.0	-7.0	-6.2	-7.0	-6.8	-7.00	-6.59	44.5	-7.0	-7.0	-6.6	-7.0	-6.9	-7.00	-6.82
Peterborough				0	.0 -2.0	-2.0	-2.0	5.0	-0.3	-2.00	1.50	0.0	-2.0	-2.0	-2.0	5.0	-0.3	-2.00	1.50	0.0	30.0	10.0	7.0	33.0	20.0	31.50	8.50	0.0	30.0	10.0	7.0	33.0	20.0	31.50	8.50
Etton to Bexwell			4	10	2	24	29	22	22	24.07	25.55		22	21	27	19	20	21.06	22.62		30	29	32	28	25	28.84	30.69		29	29	32	27	25	28.21	30.09
Bexwell	23.0	3.2		29	.1 2.5	2.3	5.2	1.2	2.9	2.63	3.21	27.9	1.7	1.2	4.0	0.1	1.7	1.45	2.01	31.0	4.8	4.2	7.3	3.0	4.8	3.89	5.75	30.4	4.2	3.6	6.7	2.4	4.2	3.32	5.14
Bexwell to Rede			- 2	25	2	21	. 24	20	22	21.44	22.33		20	19	23	19	20	19.61	20.61		25	25	25	25	25	24.95	24.94		25	25	25	25	25	24.89	24.95
Ely	20.9			18	.4 0.0	0.0	0.0	0.0	0.0	0.00	0.00	18.6	0.0	0.0	0.0	0.0	0.0	0.00	0.00	20.0	0.0	0.0	0.7	0.0	0.2	0.00	0.33	20.4	0.0	0.0	1.2	0.0	0.3	0.00	0.58
Newmarket	15.0			10	.9 0.0	0.0	0.0	0.0	0.0	0.00	0.00	10.9	0.0	0.0	0.0	0.0	0.0	0.00	0.00	11.9	0.0	0.0	0.0	0.0	0.0	0.00	0.00	11.8	0.0	0.0	0.0	0.0	0.0	0.00	0.00
Wooditton	1.6		_	1	.9 0.3	0.2	0.4	0.2	0.3	0.26	0.30	1.7	0.1	0.1	0.2	0.0	0.1	0.09	0.13	2.0	0.4	0.3	0.5	0.3	0.4	0.31	0.43	1.8	0.2	0.2	0.4	0.1	0.2	0.16	0.26
Haverhill (Rede)	7.0			10	.1 3.:	2.9	3.9	2.5	3.1	3.02	3.22	9.7	2.7	2.5	3.5	2.1	2.7	2.63	2.83	10.6	3.6	3.4	4.4	2.9	3.6	3.25	3.89	10.4	3.4	3.2	4.2	2.8	3.4	3.06	3.69
Rede to Lt Weinetham			- 2	25	11	18	20	18	18	18.16	18.82		17	17	19	16	17	16.89	17.66	5	21	21	19	22	21	21.39	20.29		21	22	19	22	21	21.67	20.41
Rushbrooke (Little Welnethan)	13.9			21	.1 7.3	7.2	7.2	7.2	7.2	7.20	7.20	20.0	6.1	6.1	6.1	6.1	6.1	6.10	6.10	22.5	8.6	8.6	8.6	8.6	8.6	8.60	8.60	21.9	8.0	8.0	8.0	8.0	8.0	8.00	8.00
Thetford/Ixworth (Little Welnethan)	15.5			15	.3 0.0	0.0	1.0	0.0	0.3	0.00	0.51	15.6	0.1	0.0	1.3	0.0	0.4	0.05	0.67	16.3	0.8	0.5	2.1	0.0	0.8	0.39	1.27	16.9	1.4	1.1	2.8	0.4	1.4	0.92	1.94
Lt Weinetham to Raydon / Wherestead			- 2	20	1:	11	12	11	- 11	10.96	11.11		11	11	11	10	11	10.74	10.88	3	12	12	9	13	11	12.40	10.42		12	13	8	14	12	12.75	10.48
Ipswich	65.7			60	.5 1.0	1.0	1.0	1.0	1.0	1.00	1.00	58.4	1.0	1.0	1.0	1.0	1.0	1.00	1.00	65.5	1.0	0.9	0.0	1.0	0.7	1.00	0.45	63.7	-3.1	-2.3	-7.2	-0.9	-3.4	-2.00	-4.75
Raydon (or split between Semer & Raydon)	0.0	0.5		8	.0 7.5	7.4	8.1	7.1	7.5	7.46	7.61	7.8	7.3	7.2	7.9	6.9	7.3	7.24	7.38	8.3	7.8	7.7	8.5	7.4	7.8	7.60	8.07	8.5	8.0	7.8	8.6	7.5	8.0	7.75	8.23
Raydon to Gt Horkesley			- 1	15		3	3	3	3	2.50	2.50		3	3	3	3	3	2.50	2.50		3	4	0	5	3	3.80	1.90		7	7	7	7	7	7.00	7.00
South Essex	56.0			56	.7 2.5	2.5	2.5	2.5	2.5	2.50	2.50	57.7	2.5	2.5	2.5	2.5	2.5	2.50	2.50	57.7	2.8	3.6	0.2	4.8	2.9	3.80	1.90	62.8	7.0	7.0	7.0	7.0	7.0	7.00	7.00
																																			_

	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12
		1:200 Dro	ught		_	1	_	Whole L				
			1:200 Drought H8 DY2045	1:200 Drought H8 DY2045 Drought in Colchester	Vinter/Spring NY 2025	Summer Autumn NY 2025	Winter/Spring NY 2045	Summer Autumn NY 2045	Autumn/Winter DY 2025	Spring/Summer DY 2025	Autumn/Winter DY 2045	Spring/Summer DY 2045
Drop Off Locations	Summer	Autumn	Autumn	Autumn								
Notts	2.30	0.53	0.53	0.53	0.80	1.49	0.61	1.21	1.12	2.38	1.17	2.43
Lincoln	20.00		-	-	-	-	-	-	-	-	-	-
Grantham	-		-		-	-	-	-	-	-	-	-
Bourne (Input)	- 7.00	- 7.00	- 7.00	- 7.00	- 7.00	- 7.00	- 7.00	- 7.00	- 7.00	- 6.59	- 7.00	- 6.82
Peterborough	-	40.00	33.00	33.00	- 2.00	1.50	- 2.00	1.50	31.50	8.50	31.50	8.50
Bexwell	15.00	2.40		2.40	2.63	3.21	1.45	2.01	3.89	5.75	3.32	5.14
Ely	2.66				-		-	1	-	0.33	-	0.58
Newmarket	2.00				-		-	1	-		-	-
Wooditton	0.50	0.10	0.10	0.10	0.26	0.30	0.09	0.13	0.31	0.43	0.16	0.26
Haverhill (Rede)	4.21	2.75		2.75	3.02	3.22	2.63	2.83	3.25	3.89	3.06	3.69
Rushbrooke (Little Weinethan)	10.00		- `		7.20	7.20	6.10	6.10	8.60	8.60	8.00	8.00
Thetford/ixworth (Little Weinethan)	2.80	0.41	0.41	0.41	-	0.51	0.05	0.67	0.39	1.27	0.92	1.94
Ipswich	- 7.20	- 0.90	10.00	- 0.90	1.00	1.00	1.00	1.00	1.00	0.45	- 2.00	- 4.75
Raydon (or split between Semer & Raydon)	8.63	7.51	7.51	7.51	7.46	7.61	7.24	7.38	7.60	8.07	7.75	8.23
South Essex	1.10	9.2	7.00	15.00	2.50	2.50	2.50	2.50	3.80	1.90	7.00	7.00
TOTAL (North)	55.0	55.0	51.6	53.8	15.9	21.5	12.7	18.3	54.5	35.0	53.9	34.2
TOTAL (Peterborough to Bexwell)	39.7	21.5	25.0	27.3	24.1	25.5	21.1	22.6	28.8	30.7	28.2	30.1
TOTAL (East: from Bexwell)	24.7	19.1	25.0	24.9	21.4	22.3	19.6	20.6	25.0	24.9	24.9	24.9

Design Criteria Engagement

Start Up Workshop

Range of operation

- •Max/min instantaneous and daily
- Diurnal variation
- •Normal year average, dry year average Storage turnover

Pump operating range

Flow Rates

Determined from DYAA and NYAA demand against regional DO

4 Drought periods

8 Dry and Normal periods

Cover maximum interconnector flow rates

2 key design horizons – 2025 and 2045

Model Extents

Key existing assets and networks included

Extensive enough to be useful yet efficient on runtime

Flow meter data downloaded and applied

Telemetry data used to verify model

Refreshed with latest route alignment

Network Model

The hydraulic model has been created from:

- The latest GIS extract of route alignment
- Existing regional network models captured collaboratively as to agreed extents
- Key existing sites included

The model has been verified against:

• Telemetry level, flow and pressure data

Existing Schemes Captured:

- Most onerous of options for the existing schemes have been included
- Detailed modelling for each region is a parallel workstream
- Parallel workstreams have been coordinated with

Optimatics

- The definition of this range of scenarios is a multi criteria analysis
- Optimatics has been designed with this MCA in mind
- We can achieve the majority of our sizing through spreadsheets or engineering judgement; however we need to prove it works

Phase 3 - Application and evolution

We now had:

- A dynamic network model
- Cost catalogues
- Penalty ranges
- Sizing criteria

The designs have a natural iterative nature

- Bigger pipes = smaller pumps
- Failure modes = bigger pipes
- Cost drives = smaller pipes

Translation to Optimatics

Whole Life Cost

Headline parameters:

- SPA base CAPEX uplifted to outturn costs
- 40 year analysis period, 3.7% discount rate
- 2 days per year conditioning allowance
- Normal year : Dry Year → 2 : 5
- Seasonal variation
- Power cost: 12.1 p/kWh Other parameters:
- Replacement periods:
 - Civil assets: 50 years
 - PS M&E assets: 25 years
 - PS ICA assets: 10 years
- PLM
- WR cleaning
- Insurance

Conditioning v Other	Cond.				Otl	ner						
Conditioning v Other	0.5%				99.	5%						
	n/a		20	2045								
2025 v 2045	100.0%		25	5%		75%						
	100.0%		43	3%			57	7%				
Normal v Dry year	n/a	Norm	al year	Dry	year	Norm	al year	Dry	year			
Normal v Dry year	100.0%	7:	1%	29	9%	71	L%	29	9%			
		Winter/	Summer/	Winter/	Spring/	Winter/	Summer/	Winter/	Spring/			
Seasonal		Spring	Autumn	Autumn	Summer	Spring	Autumn	Autumn	Summer			
Seasonai	n/a	config.										
	100.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%			
Proportions within a												
"representative" year	0.5%	15.1%	15.1%	6.0%	6.0%	20.4%	20.4%	8.2%	8.2%			
Conversion of daily energy opex to					365.25							
WLC					21.71							

Carbon parameters

- Operational and Embedded Carbon
- Variation on pipe materials

"The entire pipeline has been designed to have the lowest carbon footprint possible in line with Anglian's pledge to reach net zero carbon by 2030"

Significant financial saving for Anglian Water as part of their green bonds, requiring them to reach a carbon target of 65%

Optimatics Approach

The Optimatics algorithm will carry out analysis on all these criteria and inform on solution costs against performance within the hydraulic model

• For instance, the most expensive solution sacrifices nothing, but the cheapest solution doesn't work

• The Pareto curve shows the most efficient solutions are "in the knee"

Optimatics – So how do we choose?

We have thousands of runs – how do we choose the right ones?

- Starting with Aperture
- We can decide what we are interested in
- We select those runs that meet it
- We can then dive further into those runs

WL Cost and Carbon Pareto Charts of Options

Optimatics – So how do we choose?

The software allows us to look at each plan in detail

AND THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF	1	Pareto	Plan002	65352
cision Outcomes	-1	D: 473; ND: 300; CT:	D: 491.0; ND: 200; CT	U: 3/1/53; NU: / 10; V
Isleham-Kentford -> 13	CT	D: 553.2; ND: 630; CT	D: 597.4; ND: 610; CT	D: 597.4; ND: 610; C
Kentford -> Tank Kentford_New	!0	35.7m, \$1311325.20	35.7m, \$1311325.20	35.7m, \$1311325.20
Kentford pump -> Pump 20049		Kentford_95:	Kentford_100:	Kentford_95:
Kentford-Gazeley -> 14	CT	D: 597.4; ND: 610; CT	D: 597.4; ND: 610; CT	D: 645.8; ND: 660; C
Gazeley-Wooditton offtake -> 15	CT	D: 597.4; ND: 610; CT	D: 597.4; ND: 610; CT	D: 597.4; ND: 610; C
Wooditton offtake -> 31	CT	D: 491.8; ND: 560; CT	D: 491.8; ND: 560; CT	D: 491.8; ND: 560; C
Wooditton offtake-Rede -> 16	CT	D: 624.6; ND: 710; CT	D: 553.2; ND: 630; CT	D: 696.8; ND: 711; C
Rede-Little Welnetham (1) -> 17	CT	D: 553.2; ND: 630; CT	D: 553.2; ND: 630; CT	D: 624.6; ND: 710; C
Rede -> Tank Rede_New	!0	35.7m, \$1311325.20	35.7m, \$1311325.20	35.7m, \$1311325.20
Rede-Little Welnetham (2) -> 18	CT	D: 553.2; ND: 630; C1	D: 553.2; ND: 630; CT	D: 624.6; ND: 710; C
Little Welnetham offtake -> 26	CT	D: 491.8; ND: 560; C1	D: 491.8; ND: 560; CT	D: 553.2; ND: 630; C
Little Welnetham-Nedging Tye (1) -> 19	CT	D: 553.2; ND: 630; C1	D: 553.2; ND: 630; C1	D: 703.9; ND: 800; C
Little Welnetham-Nedging Tye (2) -> 20	CT	D: 534.5; ND: 630; C1	D: 491.8; ND: 560; CT	D: 624.6; ND: 710; C
Nedging Tye-Hadleigh -> 21	CT	D: 553.2; ND: 630; C1	D: 553.2; ND: 630; CT	D: 553.2; ND: 630; C
Wherstead offtake -> 30	CT	D: 475; ND: 560; CT:	D: 475; ND: 560; CT:	D: 475; ND: 560; CT:
Wherstead offtake-Raydon -> 23	CT	D: 553.2; ND: 630; C1	D: 553.2; ND: 630; CT	D: 553.2; ND: 630; C
Hadleigh-Wherstead offtake -> 22	CT	D: 624.6; ND: 710; C1	D: 553.2; ND: 630; C1	D: 894; ND: 914; CT:
Raydon offtake -> 32	CT	D: 603.4; ND: 710; C1	D: 475; ND: 560; CT:	D: 645.8; ND: 660; C
Raydon-Great Horkesley (1) -> 24	CT	D: 475; ND: 560; CT:	D: 475; ND: 560; CT:	D: 534.5; ND: 630; C
Raydon-Great Horkesley (2) -> 25	CT	D: 491.8; ND: 560; CT	D: 491.8; ND: 560; CT	D: 491.8; ND: 560; C
Wherstead pump -> Pump 20022		Wherstead_95:	Wherstead_90:	Wherstead_100:
Crossings -> Valve 31378		Setting: 0.00	Setting: 0.00	Setting: 0.00
Gazeley offtake -> 27	CT	D: 650.54; ND: 800; C	D: 491.8; ND: 560; CT	D: 534.5; ND: 630; C
Waddington pump		Waddington_105:	Waddington_100:	Waddington_105:
Waddington -> Tank Waddington_New	!0	50.5m, \$2189730.20	50.5m, \$2189730.20	61.8m, \$2986135.20
Pump to Lincoln -> Pump 20055		To-Lincoln_15:	To-Lincoln_15:	To-Lincoln_20:
Pipe class (offtakes) -> Active		Active	Active	Active
Waddington-Lincoln -> 5	CT	D: 491.8; ND: 560; CT	D: 491.8; ND: 560; CT	D: 491.8; ND: 560; C
Notts-Waddington (2) -> 4	CT	D: 795.4; ND: 813; C1	D: 795.4; ND: 813; C1	D: 795.4; ND: 813; C
Notts-Waddington (1) -> 3	CT	D: 795.4; ND: 813; C1	D: 795.4; ND: 813; C1	D: 795.4; ND: 813; C
Elsham-Notts (2) -> 2	CT	D: 795.4; ND: 813; C1	D: 795.4; ND: 813; CT	D: 795.4; ND: 813; C
Pipe class (spine) -> Active		Active	Active	Active
Elsham-Notts (1) -> 1	CT	D: 795.4; ND: 813; C1	D: 795.4; ND: 813; C1	D: 795.4; ND: 813; C

Validation

Traditional method

One optimised scenario engineered to give lowest WLC and meet performance criteria

Standard calculation QA

Option 1 – Algorithm Solution

Section	Dia / Material
Elsham to Cadney	DN800 Steel
Cadney to HGG offtake	DN800 Steel
HGG offtake to Waddington	DN800 Steel
Welby to Etton (Part a)	DN800 PE17
Welby to Etton (Part b)	DN800 Steel

Cost component	£m
CAPEX (whole spine, pipeline, PS + WR)	£384.1
OPEX (energy only NPV)	£15.2
OPEX (other, NPV)	£10.6
Whole Life Cost	£409.9

Carbon component	t CO₂e
Emb. carbon (whole spine, pipeline, PS + WR)	102,730
Carbon (operational)	22,621
Whole Life Carbon	125,351

Option 2 – Modelled All Steel

Section	Dia / Material
Elsham to Cadney	DN800 Steel
Cadney to HGG offtake	DN800 Steel
HGG offtake to Waddington	DN800 Steel
Welby to Etton (Part a)	DN800 Steel
Welby to Etton (Part b)	DN700 Steel

Cost component	£m
CAPEX (whole spine, pipeline, PS + WR)	£424.1
OPEX (energy only NPV)	£15.2
OPEX (other, NPV)	£10.6
Whole Life Cost	£449.9

Carbon component	t CO ₂ e
Emb. carbon (whole spine, pipeline, PS + WR)	101,651
Carbon (operational)	23,621
Whole Life Carbon	124,172

Option 3 – DN700 Steel North

Section	Dia / Material
Elsham to Cadney	DN700 Steel
Cadney to HGG offtake	DN800 Steel
HGG offtake to Waddington	DN800 Steel
Welby to Etton (Part a)	DN800 Steel
Welby to Etton (Part b)	DN700 Steel

Cost component	£m
CAPEX (whole spine, pipeline, PS + WR)	£413.7
OPEX (energy only NPV)	£36.3
OPEX (other, NPV)	£10.8
Whole Life Cost	£430.8

Carbon component	t CO₂e
Emb. carbon (whole spine, pipeline, PS + WR)	100,851
Carbon (operational)	24,380
Whole Life Carbon	124,231

Option summary – Cost and Carbon

Note: The above table is for the entire scheme, however only the northern scope is being changed between the options.

Option 1.1: PS at Rede, Hadleigh

Cost components	£m
CAPEX (whole spine, pipeline, PS + WR)	56.088
OPEX (NPV, 40 years, 3.7%)	2.826
Whole Life Cost	58.914

Carbon components	t CO ₂ e
Emb. carbon (whole spine, pipeline, PS + WR)	13,317
Carbon (operational energy, 40 year)	609
Whole Life Carbon	13,926

(run 47)

- SDR13.6 M av

Option 1.1: PS at Rede, Hadleigh

Pipeline hydraulic profiles

Benefits – Outputs of the Modelling Optimisation

- Reduced pipe size and length £57.7m
- Reduced storage total 66ML to 32ML £7.8m
- Reduced carbon 13,350 Tonnes of CO2e
- Reduced pump sizes £7.4m

Optimatics Benefits

Activities could be carried out traditionally, so why use this software?

- Tight timescales required quick turnaround of options
 - The design challenges meant sizing needed to be robust
 - Did we analyse all options thoroughly?
 - Do we understand the impact on the existing networks?
- The quantity of criteria
 - The system became more complex as we progressed south
 - An estimate of manual effort with the number of options for the south region was equal to 1.1 million modeller hours
- Sizing and costing for carbon and TOTEX were carried out together

Any questions?

Thank you for listening 4

